HashNWalk: Hash and Random Walk Based Anomaly Detection in Hyperedge Streams

Geon Lee, Minyoung Choe, and Kijung Shin
KAIST
{geonlee0325, minyoung.choe, kijungs}@kaist.ac.kr

Summary
- Goal: to detect anomalous hyperedges in a hyperedge stream
- Previous Work:
 - proposed algorithms for (pairwise) graphs
 - focused on only one of the aspects of anomalousness
- Proposed Method (HashNWalk):
 - an online algorithm for detecting anomalous hyperedges
 - detects structurally/temporally abnormal hyperedges
- Results:
 - Speed: processes each hyperedge in near real-time
 - Space: requires constant space, controlled by the user
 - Accuracy: outperforms the competitors up to 47% ↑ AUROC

Background: Hypergraphs
- Hypergraphs model group interactions
 - each hyperedge is a subset of any number of nodes
- In many real-world scenarios, hypergraphs evolve over time
 - a hyperedge stream \(\{(e_1, t_1), \ldots, (e_n, t_n)\} \) is a sequence of hyperedges

Background: Random Walk
- Random walk based on edge-dependent vertex weights for exploiting higher-order information
 - If the current node is \(u \),
 1. Select a hyperedge \(e \) that contains node \(u \) (i.e., \(u \in e \)) with probability proportional to the weight \(\omega(e) \).
 2. Select a node \(v \in e \) with probability proportional to the edge-dependent vertex weight \(\gamma(e)(v) \).
 3. Walk to node \(v \).

Problem Definition
- Anomalies in Hypergraphs:
 - Unexpected hyperedges consist of unnatural comb. of nodes
 - Bursty hyperedges appear in bursts in a short period of time
- Formal Problem Definition:
 - Given: a hyperedge stream
 - Detect: anomalous (i.e., unexpected/bursty) hyperedges
 - Desired: (a) in near real-time
 (b) using constant space

Proposed Algorithm: HashNWalk
- (1) Hypergraph Summarization
 - a new hyperedge arrives in the input hyperedge stream
 - nodes are merged into M supernodes by hashing
 - each hyperedge is represented as an \(M \)-dimensional vector
- (2) Incremental Update
 - the transition probability of supernode \(u \) → \(v \)
 - \(\bar{P}_{uv} \) is computed from \(S \) and \(T \)
 - They are incrementally updated in response to new hyperedges

Experimental Results
Q1. Performance: HashNWalk is accurate and fast in a real dataset (credit card transactions) and two semi-real datasets

Q2. Discoveries: HashNWalk detects meaningful events.
(1) Case study in DBLP hypergraph
(2) Case study in cite-patent hypergraph

Q3. Scalability: HashNWalk scales linearly with the hypergraph size
- Reproducibility: source code & datasets are available at:
 https://github.com/geonlee0325/HashNWalk